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INTRODUCTION

As top predators, seabirds form an abundant and
diverse community sustaining marine ecosystem sta-
bility through top-down control (Brooke 2004, Fred-
eriksen et al. 2007a). Seabirds are thus regarded as
indicators of marine fish stocks and overall marine
ecosystem health (Montevecchi 1993, Boyd et al.

2006, Parsons et al. 2008, Mallory et al. 2010). De -
spite recognition of this important role (e.g. Schreiber
& Burger 2002, Barrett et al. 2006), these apex pred-
ators continue to face numerous threats, and seabird
populations have declined globally by >69% over
the last 60 yr (Croxall et al. 2012, Paleczny et al.
2015). Identifying important marine areas that may
receive protection has therefore become a matter of
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ABSTRACT: Conservation of threatened seabirds commonly focuses on protection of breeding
areas. However, conditions at non-breeding areas also affect population dynamics, calling for a
better understanding of seabird migratory ecology. In particular, it is crucial to identify the type of
migration and the oceanic conditions determining non-breeding habitat selection. We studied
movements of the threatened Socotra cormorant Phalacrocorax nigrogularis breeding at Siniya
Island, United Arab Emirates (UAE) (35% of the world population), using platform transmitter ter-
minals (PTTs) deployed on adults during the 2013 and 2014 breeding seasons. Concomitantly, we
used remotely-sensed chlorophyll a concentration data (CHL) of areas visited by birds in the Ara-
bian Gulf and Gulf of Oman regions (2002 to 2016 monthly averages), as an index of primary pro-
ductivity. The migratory pattern of the Socotra cormorant was non-dispersive, fitting with the gre-
garious habits and group foraging mode of this forage fish specialist. Birds performed a short
westward directional migration to islands off western UAE, then moved eastwards to the Strait of
Hormuz before returning to Siniya Island. Birds concentrated at a few localities, which therefore
represent areas of high conservation priority. During breeding, CHL around the colony was high.
During non-breeding, however, CHL around non-breeding areas was low, even though more pro-
ductive waters were present within foraging range. The mismatch between the non-breeding
phase and CHL could be linked to spatial and temporal lags in responses of secondary and tertiary
consumers to primary productivity. Effective conservation will necessitate a better understanding
of the ecology and distribution of forage fish within the Gulf.
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priority within the scientific community working on
seabird conservation (Lascelles et al. 2012). This,
however, necessitates adequate knowledge of sea-
bird movements not only during the breeding sea-
son, when reproductive success may depend upon
local marine resources available within foraging
range from the colony (Frederiksen et al. 2005,
2007b), but also during the post-fledging and inter-
breeding period. Indeed, juvenile or adult survival is
crucial in sustaining population growth, and can be
driven by conditions in waters where juveniles dis-
perse, and at non-breeding grounds (Phillips et al.
2005, Sherley et al. 2013).

Most seabirds exhibit annual migratory behaviour
between breeding grounds and non-breeding
grounds and back (Schreiber & Burger 2002). The du-
ration and distance of migration impose energetic
and fitness constraints on seabirds, which in turn af-
fect future reproductive success (Fayet et al. 2016,
Shoji et al. 2016). Dispersive migration is different
from typical long-distance migration (hereafter
named directional migration) in which birds move
annually between defined breeding and non-breed-
ing areas (Newton 2008). In dispersive migration,
movement can occur in many potential directions
from the breeding site, but still involves a return jour-
ney. Migrants using a directional, population-level
migratory pattern, presumably inherit the migration
route genetically or learn it by following conspecifics
(Newton 2008, Guilford et al. 2011). Drivers of disper-
sive migration in seabirds are not well characterized,
however, and factors like sex segregation, intra-spe-
cific competition, oceanic productivity, prey species
composition and prey movement and abundance
could collectively drive the dispersive process
(Schreiber & Burger 2002, Guilford et al. 2011, Fayet
et al. 2016). Year-round tracking of seabirds using
miniaturized biologgers or satellite transmitters have
greatly improved our understanding of seabird move-
ment (Cooke 2008, Lewison et al. 2012). In particular,
migratory behaviour is better quantified, aiding in
the identification of areas used for foraging and roost-
ing in the inter-breeding period. For example, non-
breeding black-browed albatrosses Thalassarche
melaophrys may range across a large expanse of
open ocean between southern Africa and southeast-
ern South America, selecting areas with high produc-
tivity during this period for foraging (Phillips et al.
2005). Black-legged kittiwakes Rissa tridactyla in
northeastern North America undergo dispersive mi-
gration driven by a combination of foraging and nu-
merous oceanic factors, highlighting disjunct areas of
conservation significance (McKnight et al. 2011).

Hence, it is crucial to gain a clearer understanding of
the migratory patterns of seabirds and their as so -
ciated drivers as inputs for the design of effective con-
servation strategies. Depending on the type of migra-
tion pattern, the type of conservation strategy may
vary, with certain types of migration (e.g. dispersive)
posing challenges in developing conservation strate-
gies (Guilford et al. 2011, McKnight et al. 2011).

The purpose of this study was to describe the year-
round movements of the threatened Socotra cor-
morant Phalacrocorax nigrogularis, and explore what
processes (behavioural and oceanic) drive its migra-
tory patterns in order to better inform its conserva-
tion. Little information exists on the biology and the
ecology of this species (Jennings 2010, Muzaffar et
al. 2012, 2013, 2015a, 2015b, Cook et al. 2017) and
knowledge on Socotra cormorant movements outside
of the breeding season is scarce. In the Arabian Gulf,
birds are known to breed from August to January on
off-shore islands (Jennings 2010, Muzaffar et al.
2012, 2015a), where they group forage in shallow,
coastal waters within 60 km of the colony (Cook et al.
2017). After breeding, however, direction, extent and
duration of migration are speculative.

Using state-of-the-art satellite transmitters de -
ployed on birds, we followed the movements of Soco-
tra cormorants over the course of their entire annual
cycle. We tested 3 hypotheses: (1) Socotra cormorants
stay in the Gulf after breeding. It is assumed that the
northern population based in the Gulf is isolated
from the southern populations of Oman in the south-
ern Gulf of Oman and north-western Arabian Sea.
(Jennings 2010, BirdLife International 2017). (2) The
migratory pattern of the Socotra cormorant is disper-
sive rather than directional (Jennings 2010, Muzaffar
et al. 2012). Following a dispersive pattern, we ex -
pect birds to visit a wide range of non-breeding
grounds, including the Northern Gulf, the islands
and coasts of Iran and the Gulf of Oman. (3) Spatial
and temporal variations in patterns of marine pri-
mary productivity explain choice of breeding and
non-breeding grounds in Socotra cormorants. Pri-
mary productivity as measured by chlorophyll a con-
centration (CHL) has been linked to areas with high
overall fish productivity and concomitant spatial
aggregations of seabirds (Suryan et al. 2012, Grecian
et al. 2016). Very little knowledge exists on distribu-
tion of fish eaten by Socotra cormorants (Muzaffar et
al. 2015b), so proxies like CHL could help to establish
spatial distribution, especially in the inter-breeding
period. Our overall objective was to use CHL data
to characterize major -non-breeding habitat to help
iden tify areas of high conservation value.



Muzaffar et al.: Cormorant migration and primary productivty 183

MATERIALS AND METHODS

Study area: the Gulf

The Arabian Gulf (also called Persian Gulf), here-
after named the Gulf, is a relatively small, shallow,
semi-enclosed, hypersaline gulf that has unique
prop erties that make it harsh for aquatic life (John et
al. 1990, Nezlin et al. 2007, Grandcourt 2012). With
salinities among the highest in the world (typically
ranging from 37 to 50 psu, but as high as 59 psu; John
et al. 1990), invertebrate and fish assemblages are
species-poor compared to the neighbouring Gulf of
Oman (Burt et al. 2011, Grandcourt 2012), to which it
is connected via the narrow Strait of Hormuz. Pro-
ductivity is also generally lower in the Gulf compared
to the Gulf of Oman. Sea surface temperatures range
from 23 to 35°C, with cooler waters occurring away
from the coasts towards the central and northwestern
regions (John et al. 1990, Nandkeolyar et al. 2013).
The absence of thermal stratification in most parts of
the Gulf encourages nutrient mixing, and strong
northwestern winds during summer and winter cre-
ate patterns of wind stress that effectively isolate the
Gulf from the greater Indian Ocean (John et al. 1990,
Nezlin et al. 2007, Riegl & Purkis 2012).

Study species: the Socotra cormorant

The Socotra cormorant Phalacrocorax nigrogularis,
an endemic to the Arabian Peninsula (Jennings
2010), is one of the most abundant seabirds in the
Gulf (Aspinall 2010, Jennings 2010, BirdLife Inter -
national 2017). The global population is in the order
of 110 000 pairs, or about 750 000 individuals (Jen-
nings 2010, BirdLife International 2017), the bulk of
which (~90%) make up the northern population that
resides and breeds within the Gulf. Despite these
apparently large numbers, the species is undergoing
catastrophic declines within its restricted range and
its relatively small area of occupancy (Jennings 2010,
EAD 2014, BirdLife International 2017). Identified
primary threats include disturbance at, or destruction
of, the limited number of small breeding colonies,
mainly through radical transformations of islands
and coastlines by man (Sheppard et al. 2010).

Currently, 14 colonies of Socotra cormorants are
known within the Gulf. At least 7 colonies have al -
ready been abandoned due to oil exploitation activi-
ties (BirdLife International 2017). In the Gulf of
Salwa, west of Qatar, 4 colonies (3 colonies in Saudi
Arabia, with collectively about 27 000 pairs and 1

colony in Bahrain with about 30 000 to  40 000 pairs)
constitute possibly the largest concentration of the
species in the world (Jennings 2010, BirdLife Interna-
tional 2017, although see Muzaffar et al. 2017). East
of Qatar, most of the 9 colonies of the UAE are small,
hosting a few thousand pairs, with the exception of
one large colony, Siniya Island, that hosts 28 000 to
41 000 pairs breeding between the months of August
and January (Muzaffar et al. 2012, 2017). Breeding
Socotra cormorants on Siniya feed on 11 000 to
18 000 t of small pelagic fish every year (Muzaffar et
al. 2015b), suggesting that the species plays a major
role in the Gulf ecosystem.

Conservation of the species is a contentious matter,
since fishermen may perceive them to be a threat to
fisheries (Muzaffar 2015b). However, the only pub-
lished study on Socotra cormorant diet has shown
that there is minimal overlap between the diet of
the birds when breeding (composed of small pelagic
fish) and the fish species targeted by local fisheries in
the eastern Gulf (Muzaffar et al. 2015b). Addition-
ally, Socotra cormorants are suspected of carrying
Coxi ella burnetii, a tick borne pathogenic bacterium
that could infect people to cause Q-fever (Sonnevend
et al. 2011). However, a recent study from the largest
colony in the United Arab Emirates (UAE) only
found non-pathogenic Coxiella endosymbionts that
are wide spread in the region (Al-Deeb et al. 2016).
The species is globally Vulnerable (BirdLife Inter -
national 2017) and is listed in Appendix II of the

 Convention on Migratory Species, which promotes
the conservation of migratory species through inter-
national agreements (CMS 2015). In the UAE, the
species is protected under a federal law prohibiting
hunting of wild animals, although enforcement is
limited (EAD 2014).

Study colony and logger deployments

We deployed portable transmitter terminals (PTTs)
on adults breeding at the Siniya colony (25° 37’ N,
55° 37’ E). PTTs were previously deployed success-
fully on the larger double-crested cormorant Phala -
cro corax auritus using a harness attachment tech-
nique (Guillaumet et al. 2011, King et al. 2012). To
our knowledge, this is the first time that PTTs have
been deployed on an average-sized, entirely marine
species of cormorant. Socotra cormorant study birds
were randomly chosen within the study colony, and
captured on their nest by the foot using a noose trig-
gered remotely. Birds were only captured during the
late incubation-hatchling phase, and not during the
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later chick-rearing phase, when medium to large
chicks may be accidentally snared by the capturing
device and injured. In November 2013 and Novem-
ber to December 2014, 8 and 10 birds, respectively,
were equipped with Kiwisat PTTs (Model K3H 174A,
Sirtrack), using a harness built with 14 mm wide
Teflon ribbons attached in a back-pack harness simi-
lar to Miller et al. (2005) and modified according to
Muzaffar et al. (2008).

Before deployment, birds were checked to ensure
they were in good condition; no measurements were
made, in order to reduce time of manipulation. Aver-
age (± SD) adult body mass of Socotra cormorants is
1.5 ± 0.1 kg (Cook et al. 2017). Each PTT weighed
36.5 g, thus representing 2.4 ± 0.2% of the body mass
of birds, below the 3% recommended for a payload
deployed on flying birds (Phillips et al. 2003). Cor-
morants were immediately released as soon as the
harness was secure. Total time between bird capture
and release was ≤20 min. Study nests were moni-
tored for a few days after capturing sessions and all
study birds returned to their nests following release.

PTT recordings and data analyses

PTTs recorded between 00:00 and 05:00 h daily to
optimize battery life and satellite costs. In 2013−2014,
locations were recorded during the months of
November and December 2013 and May and June
2014 (80 d of recording). The January to April gap in
recordings was caused by a technical failure of the
ARGOS system, which ceased to record PTT signals.
In 2014−2015, locations were recorded from Novem-
ber 2014 to August 2015 (264 d of recording). A total
of 2331 and 16 976 locations from 8 and 10 birds were
recorded in 2013−2014 and 2014−2015, respectively.
Location data with specified levels of accuracy (loca-
tion classes) were obtained from  www.argos-system.
org. Low quality positions (locations classes 0, A, B,
or Z) were excluded. These usable location data
formed 44.2 and 51.6% of locations in 2013−2014 and
2014−2015, respectively. Aberrant locations (far
inland or on another continent or ocean) were then
excluded manually (n = 8 and 59 in 2013−2014 and
2014−2015, respectively). In the end, a total of 1219
and 7960 usable locations from 8 and 10 birds were
recorded in 2013−2014 and 2014−2015, respectively
(Table 1). The number of useful locations recorded
daily per PTT varied between 0 and 36 and 0 and 24
in 2013− 2014 and 2014−2015, respectively.

We analysed the density distribution of Socotra cor-
morant positions on a monthly basis using kernel

analyses performed in R 3.0.3 (R Core Team 2017)
with ks (Duong 2007), a kernel smoothing package
which implements diagonal and unconstrained data-
driven bandwidth matrices (smoothing parameters)
for kernel density estimation. We also calculated the
linear distance between the breeding colony (Siniya
Island) and every roosting location. For roost loca-
tions in the Gulf of Oman, distance to colony was cal-
culated by adding the linear distance between the
colony and the northernmost point of Musandam
Peninsula on the Strait of Hormuz (26° 24’ N,
56° 30’ E) to the linear distance between the latter
point and roost location. This 2-step calculation was
done because Socotra cormorants do not cross large
land masses while migrating, but mostly follow the
coastline (Orta 1992). All maps were drawn in ArcGIS
10.2.0 for Desktop (Esri® ArcMap™).

Primary productivity around roosting areas

We estimated primary productivity in areas visited
by Socotra cormorants using CHL data. CHL is
widely used as an index of phytoplankton biomass
and,  as such, is a key input to primary productivity
models (Monticelli et al. 2007). Data were recorded
by the Moderate Resolution Imaging Spectroradio -
meter (MODIS) instrument aboard NASA’s Aqua
satellite. MODIS measures CHL every day over the
entire planet. We used imageries produced by the
Earth Observatory Group) with CHL at a pixel reso-
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Year                  Month                PTTs                     No. of 
                                                                               locations

2013                   Nov                      8                           323
2013                   Dec                      8                           360
2014                   May                     2                           387
2014                   Jun                       1                           149
2014                   Nov                      8                           679
2014                   Dec                      9                         1177
2015                   Jan                       9                           924
2015                   Feb                       8                         1072
2015                   Mar                      8                         1063
2015                   Apr                       4                           832
2015                   May                     4                           630
2015                   Jun                       4                           880
2015                   Jul                        4                           634
2015                   Aug                      2                             72

Table 1. Summary of monthly tracking data on Socotra cor-
morants Phalacrocorax nigrogularis in the Arabian Gulf fol-
lowing breeding on Siniya Island in 2013 and 2014, showing
the number of platform transmitter terminals (PTTs) record-
ing and number of night locations recorded in each month 

after filtering of raw data
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lution of 0.1°. Maps covering the period 2013− 2015
lack significant data due to cloud cover. Hence, we
worked with maps averaging monthly data over the
entire time series of the Aqua-MODIS dataset, i.e.
2002 to 2016. This is ap propriate, as timing of phyto-
plankton blooms in the region are predictable
according to season and locality (Nezlin et al. 2007).
We imported these average monthly data maps in
ArcGIS and calculated the mean CHL inside the most
important areas used by cormorants, i.e. which were
visited by at least 75% of birds. Sampling was
 performed inside circles with a 60 km radius, the
 ap proximate maximum foraging range of Socotra
cormorants (Cook et al. 2017).

RESULTS

Distribution range

During both years, Socotra cormorants breeding on
Siniya Island spent their entire annual cycle on the
coast and islands along the southern coastline of the
Gulf, between Qatar (51° 30’ E) and the Strait of Hor-
muz (56° 30’ E) (Fig. 1). Birds used a variety of coastal
roosts and visited many different offshore islands
(Table S1, Fig. S1 in the Supplement at www. int-
res.com/ articles/ suppl/  m575 p181_ supp. pdf). Birds
ignored all islands north or west of Denna Island
(24° 58’ N, 52° 24’ E). The one exception was Alia
Island (25° 24’ N, 51° 34’E), which was visited during
1 wk by 2 birds in March 2015. Alia Island corre-
sponded also to the maximum migration distance
from Siniya Island (409 km). Birds did not move east
and south into the Gulf of Oman, except for 1 bird,
which used an unidentified roost between January
and March 2015 along the coast of Fujairah (UAE),
130 km south of the Strait of Hormuz.

Non-breeding grounds and timing of movements

Post-breeding migration away from Siniya Island
started in late November. The average monthly dis-
tance from the colony followed 3 phases: (1) an in -
crease during December to January, (2) a stabilisa-
tion at around ca. 300 km during February to April
and (3) a rapid decrease in May followed by a stabil-
isation around ca. 150 km during May to July (Fig. 2).

The first phase of this pattern corresponded to 89%
of birds moving southwest down the coast of the UAE
in December. By the end of January, 87% of birds
were roosting on islands off the western coast of the

UAE. This behaviour was consistent in both years,
birds occupying the same portions of coast and islands
(Figs. 3 & 4). The second phase corresponded to a 4
month non-breeding period (January to April), with
87% of birds roosting off western UAE. Birds used
various strategies during this phase. A minority (12%)
barely moved, roosting on Shuwayhat Island almost
throughout the entire period (Figs. 4, & S1). The ma-
jority, however, moved regularly between islands,
with a centre over Umm Jassar Island and Bu Tinah
Shoals, 2 island groups separated by 40 km (Figs. 4 &
S1). Cormorants roosted for one or several consecutive
nights on one island, moved to another island and
then returned. They were rarely present all at once on
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tions) and (B) 2014−2015 (n = 7960 locations). Birds were
captured and equipped with platform transmitter terminals
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one island, due to birds splitting into at least 2 or 3
groups. Cormorants also moved regularly from one
group to another (Table 2). The third phase corre-
sponded to most birds leaving this region in May for
other non-breeding grounds located in the eastern-
most part of the Gulf. These waters were reached by
cormorants following the coastline up to the area of
the Strait of Hormuz (Figs. 3 & 4). There, birds roosted
in the cliffs of the fjords of Musandam Peninsula
(Oman) during May to June (Figs. 3, 4 & S1G). During
July to August, Socotra cormorants were found all

along the coast of Ras al Khaimah,
from Musandam Peninsula, to the
north, to Siniya Island, to the south
(Fig. 4). The annual cycle of Socotra
cormorants breeding on Siniya Island
is summarised in Fig. 5.

Primary productivity at breeding and
non-breeding grounds

Mean monthly CHL composites were
obtained at 5 locations corresponding
to the distribution range and main
roosting localities of Socotra cormo -

rants as determined from PTT data (Fig. 6A). During
May to October, CHL was relatively low (1 to 2 mg
m−3) throughout the range of cormorants which
breed on Siniya Island. CHL increased substantially
after October in the eastern part of the range (Area 2
in Fig. 6A), reaching a maximum during February to
March (~4 mg m−3) and decreasing again in April
(Figs. 6B & S2). However, productivity was locally
higher, for example around Siniya during September
to February (Fig. 6C). Waters around Siniya Island
also had a higher CHL than around Musandam
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Peninsula, except in March, when waters in the Strait
of Hormuz had the highest CHL in the region (5.3 mg
m−3). Birds left Siniya Island just before productivity
became maximal there, and in the nearby Strait of
Hormuz, and moved west to wards waters with low
CHL (1 mg m−3). Later, birds moved east again
towards the non-breeding grounds of the Strait of
Hormuz, but only after April, when CHL had de -
clined to 0.5 to 1 mg m−3 there (Figs. 6C & S2).

DISCUSSION

Directional migration pathways and non-breeding
locations

Socotra cormorant movements consistently fol-
lowed defined pathways during 2 consecutive years,
contrary to the hypothesis of a dispersive pattern
(Jennings 2010). After breeding, most birds moved
westwards from Siniya Island and spent 4 mo on
islands off the coast of the western UAE. Amongst
the multitude of possible islands, birds consistently
chose to roost in an area centred over Bu Tinah
Shoals and Umm Jassar Island. In May, birds moved
eastwards and spent 2 mo roosting in the cliffs of
Musandam Peninsula, on the Strait of Hormuz. From
July onwards, birds moved gradually down the coast
towards Siniya Island (Fig. 5).

A minority of post-breeding birds migrated to the
shoreline of Fujairah, in the Gulf of Oman. They did
not migrate south of this point, giving support to the
hypothesis that the northern population of Socotra
cormorants is primarily restricted to the Gulf (Jen-
nings 2010), with limited mixing with the southern
population living along the Omani coastline in the
southern Gulf of Oman and north-western Arabian
Sea. If it is confirmed that this southern population
does not move into the Gulf and mix with the north-
ern population during the non-breeding season,
these 2 isolated populations must be treated as evo-
lutionarily significant units with potentially separate
conservation strategies based on local environmental
conditions and threats (Hällfors et al. 2016).

While Socotra cormorants breeding at Siniya Island
did not penetrate far into the Gulf of Oman, they also
did not migrate westwards beyond Qatar. Hence,
their distribution range is quite restricted and their
directional migration short. Interestingly, waters just
west of Qatar host a large concentration of breeding
Socotra cormorants (Fig. S2). The Qatari Peninsula
could represent a barrier isolating the 2 subpopula-
tions, and further studies are needed to determine if
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Table 2. Roosting areas of tracked Socotra cormorants from
the breeding colony on Siniya Island during January 2015.
Columns show movements of individual birds, identified by
platform transmitter terminal (PTT) numbers, between Bu
Tinah Shoals (dark grey) and Umm Jassar Island (light
grey); blank cells correspond to days when birds roosted on
other islands in the area. Between January and April 2015,
Bu Tinah and Umm Jassar were visited by 87% of birds
equipped with PTTs, and in January 2015, 54% of the roosts
of these birds were at these locations. Other islands where
birds roosted included Al Bazim al Gharbi, Bu Khurayj,
Mubarraz, Salahah and an unnamed island (Unnamed Is-
land 1). For locations of roosting areas see Table S1 and 

Fig. S1C,D in the Supplement
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individuals from the Gulf of Salwa (south of Bahrain)
venture out into the northern and central parts of the
Gulf during post-breeding migration, thus potentially
mixing with birds from Siniya at their non-breeding
grounds off the western UAE. Seabird spatial segre-
gation between conspecifics belonging to different
nearby colonies has been reported during the breed-
ing season, and is considered to result from density-
dependent competition (Wakefield et al. 2013). It is
not clear, however, how widespread such a spatial
segregation might be during the non-breeding sea-
son, or what mechanisms drive bird behaviour during
this stage (Thiebot et al. 2012, Ratcliffe et al. 2014).

Link between bird movements, primary
 productivity and fish migration

Socotra cormorant distribution patterns did not
match consistently with CHL (Figs. 5, 6 & S2). The
Gulf and the Gulf of Oman have predictable tempo-
ral patterns of primary productivity (Fig. S2; Nezlin et
al. 2007). High phytoplankton growth begins in
October within the Gulf of Salwa, in the coastal areas
near Siniya Island and around the Strait of Hormuz
and expands through much of the northern Gulf
(Fig. S2; John et al. 1990, Nezlin et al. 2007, Al
Rashidi et al. 2009, Nandkeolyar et al. 2013). These
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blooms correspond with the peak breed-
ing period at Siniya Island (Muzaffar et al.
2017) and presumably also in the Gulf of
Salwa colonies (Jennings 2010). A mas-
sive bloom also develops in October
within the Gulf of Oman which peaks in
March (Fig. S2; Nezlin et al. 2007). Soco-
tra cormorants nesting on Siniya Island
are therefore surrounded by areas with
high primary productivity during these
months. Following March, phytoplankton
blooms disperse abruptly and, aside from
the Gulf of Salwa (which was not used by
cormorants from Siniya Island), primary
productivity becomes low, both in the
open waters of the Gulf and in the Gulf of
Oman. In summary, there is a temporal
and spatial match between primary pro-
ductivity and breeding cormorant distri-
bution, but not between primary produc-
tivity and non-breeding cormorant
distribution.

The match−mismatch hypothesis pre-
dicts that marine top predators like sea-
birds should breed more successfully
when their breeding season overlaps with
the seasonal peak in prey availability
(Cushing 1990, Durant et al. 2007, Ramí -
rez et al. 2016). Ex panding on this notion,
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Fig. 6. Mean monthly chlorophyll a concentra-
tion (CHL) over the period 2002−2016 within the
annual distribution range of Socotra cormorants
which breed on Siniya Island. (A) Distribution
map of average daily CHL from 2002 to 2016
and areas for which CHL data was calculated.
Areas 1 and 2, separated by vertical lines on the
map, were defined to provide information on re-
gional trends within the range of the population
considered in this study. Areas 3, 4 and 5 in-
clude main roosting areas of birds throughout
the year, i.e. those which were visited by 75
to 100% of tracked birds (see Fig. 5). Area 3:
breeding grounds centred on Siniya Island
(white star); Area 4: non-breeding grounds cen-
tred on Umm Jassar Island and Bu Tinah Shoals;
Area 5: non-breeding grounds in the Strait of
Hormuz centred on Musandam Peninsula. The
radius of circles is 60 km, corresponding to
the maximum foraging range of Socotra cor-
morants. (B) Mean monthly CHL in Areas 1 and
2. (C) Mean monthly CHL in Areas 3, 4 and
5, with stages, locations and associated area
 numbers of birds over the course of the year 

indicated by vertical coloured shading'
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Socotra cormorants are expected to adjust the phe-
nology of the different phases of their biological cycle
to those of their main prey throughout the year. This
year-round correlation is found in other migratory
seabird species, such as in the sooty shearwater
Puffinus gri seus (Shaffer et al. 2006) or in the Arctic
tern Sterna para disaea (McKnight et al. 2013).
Breeding Socotra cormorants feed on anchovy Encra-
sicholina spp., blue stripe herring Herklotsichthys
quadrimaculatus and African sailfin flying fish
Parexocoetus mento (Mu zaf  far et al. 2015b).
Although these shoaling, phyto- and zooplanktivo-
rous fish should benefit from areas of high primary
productivity, the mismatch be tween primary produc-
tivity and Socotra cormorants at their non-breeding
grounds suggests that this is not always the case in
the southern Gulf.

Patterns of fish movement could help explain the
observed patterns of Socotra cormorant movement.
We are not aware of any published study document-
ing the movements of small pelagic fish within the
Gulf. Anchovy and sardine Sardinella spp. are how-
ever believed to migrate westwards along the UAE
shoreline or north-westwards in late December to
early January (Ministry of Climate Change and Envi-
ronment pers. comm.), precisely when Socotra cor-
morants from Siniya Island are moving westwards to
their non-breeding grounds off the western coast of
the UAE. Off nearby coastal Iran, Salarpour et al.
(2008) showed that the diet of the buccaneer anchovy
E. punctifer consisted primarily of copepods, cope-
pod eggs, Nauplius larvae and a range of diatoms,
dinoflagellates and other phytoplankton. Temporal
variation was evident in their diet, with stomach full-
ness indices being highest in winter, which is consis-
tent with the high CHL and low sea surface tempera-
ture in the central part of the Gulf during that period
(Nezlin et al. 2007). Once sea surface temperature
starts to increase and blooms begin to disperse after
February, buccaneer anchovy presumably migrate
northwestwards, where sea surface temperature is
cooler than in the southern Gulf during the summer
(John et al. 1990, Nezlin et al. 2007).

The study of the migratory cycle of large predatory
fish feeding on forage fish seem to correspond to the
migratory pattern of forage fish. The Indo-Pacific sail -
fish Istiophorus platypterus, a resident of the Gulf,
undergoes regional migratory movements (Hoo li han
et al. 2004, Hoolihan 2006, Hoolihan & Luo 2007).
Satellite telemetry of sailfish showed a northwest-
ward migration across the Gulf beginning in March
(Hoolihan & Luo 2007), presumably consistent with
the migratory route taken by small pelagic fish in

winter. We propose that the northwestward migra-
tory pathway of small forage fish from the eastern to
the northern Gulf drives the post breeding move-
ment of Socotra cormorants from Siniya Island to
their non-breeding area off the western UAE. It is not
clear, however, what drives the second migratory
phase of cormorants to their non-breeding grounds
in the Strait of Hormuz and further studies examining
small pelagic fish migration inside the Gulf should
shed further light on some of the drivers of Socotra
cormorant movements.

Conservation implications

This is the first study attempting to quantify the
migratory ecology of Socotra cormorants. The impor-
tance of a wide portion of the southern Gulf in sus-
taining populations of this species is highlighted.
Socotra cormorants consistently used the same non-
breeding areas during 2 consecutive years, pointing
to specific islands (e.g. Bu Tinah Shoals and Umm
Jassar Island; Fig. S1D) or cliffs (e.g. Ash Sham
and Ghubb ‘Ali Fjords on Musandam Peninsula;
Fig. S1G) and their surrounding waters as areas of
high conservation priority. Islands are an important
breeding and roosting habitat for seabirds, as they
generally host fewer predators than the mainland,
and are closer to foraging grounds (Schreiber &
Burger 2002). In the Gulf, radical human island trans-
formation (Sheppard et al. 2010) has wiped out sev-
eral breeding colonies (Jennings 2010, EAD 2014,
BirdLife International 2017) and is presumably also
preventing non-breeding birds from using many
transformed islands for roosting. Thus, current bird
numbers and active breeding and roosting localities
likely reflect habitat selection by populations that
have been disturbed by humans in the recent past or
are currently under disturbance.

Socotra cormorants exhibited a directional, albeit
short, migration, which is most likely a consequence
of their highly gregarious behaviour linked to their
dependence on group foraging to secure their prey
(Cook et al. 2017). The use of CHL as a proxy of for-
age fish concentration did not provide convincing re -
sults for predicting non-breeding grounds of cormo -
rants. Inferring consumer productivity from primary
productivity has produced mixed results in the mar-
ine environment (e.g. Suryan et al. 2012, Grémillet et
al. 2008, Sherley et al. 2017) and this is presumably
the consequence of several processes, including spa-
tial and temporal lags in the responses of secondary
and tertiary consumers to primary productivity (Sur -
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yan et al. 2012). Assuming non-breeding grounds off
the western UAE host most birds from Sini ya Island
from January to April, cormorants extract from these
waters up to 70 t of fish per day (Muzaffar et al.
2015b, Cook et al. 2017) during that period. This is
likely an underestimate since it does not account for
birds that were breeding at other colonies in the area
and that might also use those same waters during
non-breeding. Such a high biomass of prey could cor-
respond to forage fish migrating through the area at
this time of year, as suggested above. Fish might also
concentrate locally under the effect of high primary
productivity in a zone that was not part of our sam-
pling area, but still close nearby. Indeed, a small cell
of high CHL is present all year round south of Sala-
hah Island (Figs. S1C & S2), just outside the foraging
range of cormorants roosting on Umm Jassar Island
or Bu Tinah Shoals (Fig. 6A). Further west, the Gulf
of Bahrain and the Gulf of Salwa, which also have
high productivity all year long and unique water
chemistry, presumably retain some of the fish stocks
throughout the year (Nezlin et al. 2007). In summary,
the major colonies of Siniya Island and in the Gulf of
Salwa benefit from high and predictable local pri-
mary productivity during the breeding season, which
has important consequences for conservation. Islands
available to breeding birds are limited, and cormo -
rants would face difficulty in relocating to alternative
areas of high productivity if these colonies were
threatened by human development. Outside of the
breeding season, roosts are also chosen because they
are free of human disturbance and close to foraging
areas with high fish density.

The conservation of the Socotra cormorant faces
political challenges. Socotra cormorants breeding on
Siniya Island span over 3 different jurisdictions (in at
least 2 different countries) during the course of their
annual migratory cycle. The vast majority of cor-
morants migrate towards waters in the southern part
of the Gulf, under the jurisdiction of Abu Dhabi Emi-
rate, one of the 7 emirates of the UAE, although some
birds visited the nearby Qatari waters. Cormorants
then migrate to the Musandam area, which falls
under the jurisdiction of the Sultanate of Oman. Dur-
ing breeding, the Siniya Island population converges
under the jurisdiction of Umm Al Quwain, another
emirate of the UAE. The Abu Dhabi Emirate has an
active environmental agenda promoting conserva-
tion of biodiversity with a separate mandate for mar-
ine conservation, overseen by the Federal Environ-
ment Agency of Abu Dhabi (EAD 2014). The Umm
Al Quwain Emirate has its own management under
the auspices of the Ministry of Climate Change and

Environment, with an emphasis on the protection of
marine fish resources. In the Sultanate of Oman, the
Ministry of Environment and Climate Affairs over-
sees environmental protection and pollution control.
The Federal Law of the UAE prohibits egg collection,
hunting of adults or chicks or destruction of habitat of
Socotra cormorants (United Arab Emirates Federal
Law No. (24) of 1999 for protection and development
of the environment) (Muzaffar et al. 2017). However,
current protection measures are clearly not suffi-
cient. The importance of Siniya Island as an Impor-
tant Bird Area (Evans 1994) and the single largest
breeding concentration of the species in the eastern
Gulf (ca. 35% of the world breeding population) is
already recognized (Muzaffar et al. 2017). It is now
essential to develop a conservation plan under which
all 3 jurisdictions collaborate to define the best ap -
proach to monitor the status of this threatened spe-
cies and promote conservation actions for its long-
term sustainability.
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